Seite 1 von 2
Formel für ein logistisches Wachstum
Verfasst: 08.02.2008, 10:11
von Silverice
Ich hätte mal die Bitte an einen Matheexperten,oder sogar an Sotrax, mir eine Beispielformel für ein logistisches Wachstum zu geben...noch besser wäre natürlich die orginale für die Planeten,was aber nicht umbedingt vonnöten ist*g*
Ich benötige diese für eine Berechnungen meinerseits in Bezug auf Planeten x)
Danke im Vorraus =)
Re: Formel für ein logistisches Wachstum
Verfasst: 08.02.2008, 10:20
von LTD
jap ne formel fürs wiki wäre nicht schnecht
Re: Formel für ein logistisches Wachstum
Verfasst: 08.02.2008, 10:43
von Sotrax
Ihr werdet es in dem Fall nicht in eine Formel packen können, da wir es aus Speed Gründen nur mit der ersten Ableitung approximieren.
Prinzipiell ist es diese Formel:
http://de.wikipedia.org/wiki/Logistische_Funktion
Allerdings wählen wir k=0.15/G
Re: Formel für ein logistisches Wachstum
Verfasst: 08.02.2008, 11:00
von LTD
k das ist mir ein bissl zu hoch^^
kann das mal wer irgendwie in was für mich verständlichem zusammenfassen
Re: Formel für ein logistisches Wachstum
Verfasst: 08.02.2008, 11:30
von SpaceNatla
Tja LTD, dann freu dich schon einmal, wenn du den Stoff in der Schule durch nimmst

Re: Formel für ein logistisches Wachstum
Verfasst: 08.02.2008, 12:17
von sgr011566
Mit der ersten Ableitung sieht das Ganze schon wesentlich freundlicher aus - und das k hat mir die letzten Tage eh ständig Kopfzerbrechen gemacht, danke

Re: Formel für ein logistisches Wachstum
Verfasst: 12.02.2008, 17:45
von Kane
SpaceNatla hat geschrieben:Tja LTD, dann freu dich schon einmal, wenn du den Stoff in der Schule durch nimmst

würde mich wundern, wenn an irgendeiner deutschen schule differentialgleichungen durchgenommen werden....
interessanterweise wird sowas aber in österreich durchaus teilweise schon an schulen durchgenommen...
Re: Formel für ein logistisches Wachstum
Verfasst: 12.02.2008, 18:06
von SpaceNatla
Ja klar, ich hatte Differential / Integral in der 10. Klasse, war nichts besonderes und in der Uni hiess es dann erst einmal, dass man den ganzen Quatsch von der Schule vergessen sollte

Re: Formel für ein logistisches Wachstum
Verfasst: 12.02.2008, 20:18
von sgr011566
Hatten wir auch in der 5. oder 6. Gym - nagut, ich bin auch Österreicher
In der Uni wird das Zeug in Mathe als bekannt vorausgesetzt, da wird nur über die "falsche" (alias unzureichende) Definition im Schulstoff gelästert

Re: Formel für ein logistisches Wachstum
Verfasst: 13.02.2008, 00:32
von Silverice
würde mich wundern, wenn an irgendeiner deutschen schule differentialgleichungen durchgenommen werden....
interessanterweise wird sowas aber in österreich durchaus teilweise schon an schulen durchgenommen...
an deiner stelle würde ich das nicht so stehen lassen

der lehrplan ist in jedem bundesland anders und differenzialrechnung sowieso fest verankert in der sek 2...wobei,differenzialgleichungen bin ich mir jetzt nicht sicher,aber wir hatten es in der 11 x)
Re: Formel für ein logistisches Wachstum
Verfasst: 13.02.2008, 01:03
von Fienchen
Jop, in Niedersachsen Ende der 11./Anfang der 12., dann aber auch mit Integration
Re: Formel für ein logistisches Wachstum
Verfasst: 13.02.2008, 15:53
von Kane
ich spreche von differentialGLEICHUNGEN, nicht von differentiealRECHNUNG. ihr müsst schon lesen, was ich schreibe
letztere war bei uns in der schule auch in der 11ten klasse dran. sehr schöne, angenehme und leichte mathematik
aber erstere ist meines wissens nirgends in D schulstoff. kenne nur 2 ösis, die das im letzten schuljahr angelernt haben. ob das offizieller schulstoff war, weiß ich nicht.
differentialrechnung in der 5ten bis 6ten klasse find ich schon krass ... ich glaub ich zieh nach österreich, die scheinen gebildeter zu sein (komisch, dass wir deutschen immer witze über die "dummen" österreicher machen...). bei mir kam wurzel ziehen erst in der 8ten oder neunten... tragisch. leider hatte ich nur wenig möglichkeiten, mich anderweitig weiterzubilden

hätte gerne sehr früh höheren schulstoff behandelt. hab ich teilweise auch, aber das waren dann immer so zufallsdinger - richtig gefördert wurde mathematik bei mir nie und das find ich schon schade...

Re: Formel für ein logistisches Wachstum
Verfasst: 13.02.2008, 16:19
von sgr011566
Kane hat geschrieben:differentialrechnung in der 5ten bis 6ten klasse find ich schon krass
Du musst auch lesen

Ich sprach von 5./6. Gym, nicht 5./6. Schulstufe

Das wäre bei euch also 9./10. Schulstufe.
Re: Formel für ein logistisches Wachstum
Verfasst: 14.02.2008, 11:30
von Kane
wenn bei uns jemand sagt 5. klasse gymmi, dann meint er damit die 5. klasse und dass er aufs gymmi geht. ansonsten wäre es tragisch, wenn ich differentialrechnung erst in meinem 15ten schuljahr kennengelernt hätte ^^
es liegt also nicht am falschlesen (was ich schon auch des öfteren tu ^^), sondern an einem unterschiedlichen verständnis zweier gleicher begriffe

bei uns gibt es einfach keine 1.-4. klasse auf dem gymnasium. so
PS: 9te klasse fände ich auch trotzdem noch relativ krass. zumindest für ottonormalgymnasiasten
Re: Formel für ein logistisches Wachstum
Verfasst: 20.02.2008, 13:42
von C4B0S3
Wie könnte man diese Gleichung denn in Worten ausdrücken? Wächst meine Bevölkerung schneller, wenn ich 5000 Plätze frei hab als wenn ich nur 1000 Plätze frei hab?